Substrate mineralization stimulates focal adhesion contact redistribution and cell motility of bone marrow stromal cells.

نویسندگان

  • Elena V Leonova
  • Keith E Pennington
  • Paul H Krebsbach
  • David H Kohn
چکیده

Understanding the mechanisms of substrate based control of cell function is critical to the design of biomaterials. Cells interact with their extracellular matrix through cell adhesion contacts. We have previously described the self assembly of bone-like mineral onto an organic template and have shown that these biomimetic surfaces lead to an increased volume fraction of bone regenerated in vivo. In the present study, we compared the distribution of cell adhesion contacts, cell spreading, and cell motility of murine bone marrow stromal cells (BMSC) on mineralized vs. nonmineralized substrates. We developed a new approach for quantification of cell-material interactions and demonstrated that cell adhesion contacts on mineralized substrates were distributed throughout the cell surface contacting the substrate, whereas on nonmineralized substrates cell adhesion contacts were present near the cell periphery. We propose that mineralized substrates stimulate the predominant expression of fibrillar contacts, and nonmineralized substrates stimulate expression of focal adhesion contacts. Cell motility assays with colloidal gold demonstrated a statistically significant decrease in the average phagokinetic index of migrating cells on mineralized vs. nonmineralized substrates after 90 min of cell seeding. We propose that the physical-chemical properties of the substrate, altered by mineralization, cause expression of specific types of cell contacts and, as a result, modify molecular mechanisms responsible for cell spreading, motility, and possibly differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin

Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...

متن کامل

Contact between human bone marrow stromal cells and B lymphocytes enhances very late antigen-4/vascular cell adhesion molecule-1-independent tyrosine phosphorylation of focal adhesion kinase, paxillin, and ERK2 in stromal cells.

Contact with bone marrow stromal cells is crucial for the normal growth and development of B-cell precursors. We have previously shown that human bone marrow stromal cell tyrosine kinase activity can be activated by direct contact with B-lymphoid cells (J Immunol 155:2359, 1995). In the present study, we show that increased tyrosine phosphorylation of focal adhesion kinase, paxillin, and extrac...

متن کامل

Bone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia

Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2006